- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Jared L. (3)
-
Farooq, Muhammad Qamar (3)
-
Chand, Deepak (2)
-
Li, Jingzhe (1)
-
Mudryk, Yaroslav (1)
-
Odugbesi, Gabriel A. (1)
-
Pathak, Arjun K. (1)
-
Smith, Emily A. (1)
-
Varona, Marcelino (1)
-
Zeger, Victoria R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Farooq, Muhammad Qamar; Chand, Deepak; Odugbesi, Gabriel A.; Varona, Marcelino; Mudryk, Yaroslav; Anderson, Jared L. (, New Journal of Chemistry)Magnetic ionic liquids (MILs) are a subclass of ionic liquids that possess a paramagnetic metal within their chemical structure, making them susceptible to external magnetic fields. A total of twenty-four (24) MILs were prepared and characterized to investigate the effect of the ligand, cation and anion on the physiochemical properties of acetylacetonate-based MILs. It was found that thermal stabilities as high as 260 °C could be achieved by incorporating aromatic moieties in the anion structure. Additionally, the magnetic moment could be modulated by simply changing the transition metal in the anion. Magnetic moment values of 2.8 μ B , 4.5 μ B and 5.6 μ B were obtained by using Ni( ii ), Co( ii ), and Mn( ii ) as the metal centers, respectively. Furthermore, the viscosity of the MILs could be tailored from a few hundred centipoise to several thousand centipoise, increasing their potential applications in numerous interdisciplinary fields. Moreover, the MILs synthesized in this study were found to be insoluble in water at a MIL-to-solvent ratio of 0.01% (w/v), making them potentially useful in targeted separations, where very hydrophobic solvents are highly desired.more » « less
-
Chand, Deepak; Farooq, Muhammad Qamar; Pathak, Arjun K.; Li, Jingzhe; Smith, Emily A.; Anderson, Jared L. (, New Journal of Chemistry)In this study, magnetic ionic liquids (MILs) consisting of Ni( ii ), Co( ii ), and Mn( ii ) and paired with the bis[(trifluoromethyl)sulfonyl]imide [NTf 2 − ] anion were synthesized from their water soluble chloride intermediates. The MILs feature low viscosity, high hydrophobicity, and hydrolytic stability making them attractive candidates for a number of highly interdisciplinary applications.more » « less
An official website of the United States government
